Copied to
clipboard

G = C5×D8⋊C22order 320 = 26·5

Direct product of C5 and D8⋊C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×D8⋊C22, C20.84C24, C40.51C23, C4○D83C10, D84(C2×C10), C8⋊C226C10, Q164(C2×C10), C4.68(D4×C10), (C2×C40)⋊30C22, SD163(C2×C10), (C2×C20).527D4, C20.473(C2×D4), (C5×D8)⋊20C22, C8.C226C10, C4.7(C23×C10), C8.2(C22×C10), C23.20(C5×D4), (D4×C10)⋊67C22, (C2×M4(2))⋊5C10, M4(2)⋊5(C2×C10), (C5×Q16)⋊18C22, (Q8×C10)⋊56C22, D4.4(C22×C10), (C5×D4).37C23, C22.25(D4×C10), (C22×C10).38D4, (C5×Q8).38C23, Q8.4(C22×C10), (C10×M4(2))⋊15C2, (C2×C20).686C23, (C5×SD16)⋊19C22, C10.205(C22×D4), (C5×M4(2))⋊31C22, (C22×C20).467C22, (C2×C8)⋊3(C2×C10), C2.29(D4×C2×C10), C4○D45(C2×C10), (C5×C4○D8)⋊10C2, (C2×C4○D4)⋊12C10, (C10×C4○D4)⋊28C2, (C2×D4)⋊16(C2×C10), (C5×C8⋊C22)⋊13C2, (C2×Q8)⋊16(C2×C10), (C2×C4).138(C5×D4), (C2×C10).421(C2×D4), (C5×C4○D4)⋊25C22, (C5×C8.C22)⋊13C2, (C2×C4).47(C22×C10), (C22×C4).78(C2×C10), SmallGroup(320,1577)

Series: Derived Chief Lower central Upper central

C1C4 — C5×D8⋊C22
C1C2C4C20C5×D4C5×D8C5×C8⋊C22 — C5×D8⋊C22
C1C2C4 — C5×D8⋊C22
C1C20C22×C20 — C5×D8⋊C22

Generators and relations for C5×D8⋊C22
 G = < a,b,c,d,e | a5=b8=c2=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, dbd=b5, be=eb, dcd=ece=b4c, de=ed >

Subgroups: 402 in 262 conjugacy classes, 158 normal (22 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C10, C10, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C20, C20, C20, C2×C10, C2×C10, C2×C10, C2×M4(2), C4○D8, C8⋊C22, C8.C22, C2×C4○D4, C40, C2×C20, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C22×C10, C22×C10, D8⋊C22, C2×C40, C5×M4(2), C5×D8, C5×SD16, C5×Q16, C22×C20, C22×C20, D4×C10, D4×C10, Q8×C10, C5×C4○D4, C5×C4○D4, C10×M4(2), C5×C4○D8, C5×C8⋊C22, C5×C8.C22, C10×C4○D4, C5×D8⋊C22
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C24, C2×C10, C22×D4, C5×D4, C22×C10, D8⋊C22, D4×C10, C23×C10, D4×C2×C10, C5×D8⋊C22

Smallest permutation representation of C5×D8⋊C22
On 80 points
Generators in S80
(1 20 67 53 26)(2 21 68 54 27)(3 22 69 55 28)(4 23 70 56 29)(5 24 71 49 30)(6 17 72 50 31)(7 18 65 51 32)(8 19 66 52 25)(9 78 64 37 41)(10 79 57 38 42)(11 80 58 39 43)(12 73 59 40 44)(13 74 60 33 45)(14 75 61 34 46)(15 76 62 35 47)(16 77 63 36 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 8)(2 7)(3 6)(4 5)(9 10)(11 16)(12 15)(13 14)(17 22)(18 21)(19 20)(23 24)(25 26)(27 32)(28 31)(29 30)(33 34)(35 40)(36 39)(37 38)(41 42)(43 48)(44 47)(45 46)(49 56)(50 55)(51 54)(52 53)(57 64)(58 63)(59 62)(60 61)(65 68)(66 67)(69 72)(70 71)(73 76)(74 75)(77 80)(78 79)
(2 6)(4 8)(9 13)(11 15)(17 21)(19 23)(25 29)(27 31)(33 37)(35 39)(41 45)(43 47)(50 54)(52 56)(58 62)(60 64)(66 70)(68 72)(74 78)(76 80)
(1 40)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 72)(10 65)(11 66)(12 67)(13 68)(14 69)(15 70)(16 71)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 58)(26 59)(27 60)(28 61)(29 62)(30 63)(31 64)(32 57)(49 77)(50 78)(51 79)(52 80)(53 73)(54 74)(55 75)(56 76)

G:=sub<Sym(80)| (1,20,67,53,26)(2,21,68,54,27)(3,22,69,55,28)(4,23,70,56,29)(5,24,71,49,30)(6,17,72,50,31)(7,18,65,51,32)(8,19,66,52,25)(9,78,64,37,41)(10,79,57,38,42)(11,80,58,39,43)(12,73,59,40,44)(13,74,60,33,45)(14,75,61,34,46)(15,76,62,35,47)(16,77,63,36,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,22)(18,21)(19,20)(23,24)(25,26)(27,32)(28,31)(29,30)(33,34)(35,40)(36,39)(37,38)(41,42)(43,48)(44,47)(45,46)(49,56)(50,55)(51,54)(52,53)(57,64)(58,63)(59,62)(60,61)(65,68)(66,67)(69,72)(70,71)(73,76)(74,75)(77,80)(78,79), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)(66,70)(68,72)(74,78)(76,80), (1,40)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,72)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(49,77)(50,78)(51,79)(52,80)(53,73)(54,74)(55,75)(56,76)>;

G:=Group( (1,20,67,53,26)(2,21,68,54,27)(3,22,69,55,28)(4,23,70,56,29)(5,24,71,49,30)(6,17,72,50,31)(7,18,65,51,32)(8,19,66,52,25)(9,78,64,37,41)(10,79,57,38,42)(11,80,58,39,43)(12,73,59,40,44)(13,74,60,33,45)(14,75,61,34,46)(15,76,62,35,47)(16,77,63,36,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,22)(18,21)(19,20)(23,24)(25,26)(27,32)(28,31)(29,30)(33,34)(35,40)(36,39)(37,38)(41,42)(43,48)(44,47)(45,46)(49,56)(50,55)(51,54)(52,53)(57,64)(58,63)(59,62)(60,61)(65,68)(66,67)(69,72)(70,71)(73,76)(74,75)(77,80)(78,79), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)(66,70)(68,72)(74,78)(76,80), (1,40)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,72)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(49,77)(50,78)(51,79)(52,80)(53,73)(54,74)(55,75)(56,76) );

G=PermutationGroup([[(1,20,67,53,26),(2,21,68,54,27),(3,22,69,55,28),(4,23,70,56,29),(5,24,71,49,30),(6,17,72,50,31),(7,18,65,51,32),(8,19,66,52,25),(9,78,64,37,41),(10,79,57,38,42),(11,80,58,39,43),(12,73,59,40,44),(13,74,60,33,45),(14,75,61,34,46),(15,76,62,35,47),(16,77,63,36,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,8),(2,7),(3,6),(4,5),(9,10),(11,16),(12,15),(13,14),(17,22),(18,21),(19,20),(23,24),(25,26),(27,32),(28,31),(29,30),(33,34),(35,40),(36,39),(37,38),(41,42),(43,48),(44,47),(45,46),(49,56),(50,55),(51,54),(52,53),(57,64),(58,63),(59,62),(60,61),(65,68),(66,67),(69,72),(70,71),(73,76),(74,75),(77,80),(78,79)], [(2,6),(4,8),(9,13),(11,15),(17,21),(19,23),(25,29),(27,31),(33,37),(35,39),(41,45),(43,47),(50,54),(52,56),(58,62),(60,64),(66,70),(68,72),(74,78),(76,80)], [(1,40),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,72),(10,65),(11,66),(12,67),(13,68),(14,69),(15,70),(16,71),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,58),(26,59),(27,60),(28,61),(29,62),(30,63),(31,64),(32,57),(49,77),(50,78),(51,79),(52,80),(53,73),(54,74),(55,75),(56,76)]])

110 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A4B4C4D4E4F4G4H4I5A5B5C5D8A8B8C8D10A10B10C10D10E···10P10Q···10AF20A···20H20I···20T20U···20AJ40A···40P
order122222222444444444555588881010101010···1010···1020···2020···2020···2040···40
size1122244441122244441111444411112···24···41···12···24···44···4

110 irreducible representations

dim111111111111222244
type++++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10D4D4C5×D4C5×D4D8⋊C22C5×D8⋊C22
kernelC5×D8⋊C22C10×M4(2)C5×C4○D8C5×C8⋊C22C5×C8.C22C10×C4○D4D8⋊C22C2×M4(2)C4○D8C8⋊C22C8.C22C2×C4○D4C2×C20C22×C10C2×C4C23C5C1
# reps1144424416161683112428

Matrix representation of C5×D8⋊C22 in GL6(𝔽41)

1800000
0180000
001000
000100
000010
000001
,
4010000
3910000
00220116
00220017
0040100
00390019
,
4000000
3910000
00022116
00022016
0014000
00039019
,
4000000
0400000
0010022
0001022
0000400
0000040
,
4000000
0400000
0003270
0090734
0000932
00001832

G:=sub<GL(6,GF(41))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,39,0,0,0,0,1,1,0,0,0,0,0,0,22,22,40,39,0,0,0,0,1,0,0,0,1,0,0,0,0,0,16,17,0,19],[40,39,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,22,22,40,39,0,0,1,0,0,0,0,0,16,16,0,19],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,22,22,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,9,0,0,0,0,32,0,0,0,0,0,7,7,9,18,0,0,0,34,32,32] >;

C5×D8⋊C22 in GAP, Magma, Sage, TeX

C_5\times D_8\rtimes C_2^2
% in TeX

G:=Group("C5xD8:C2^2");
// GroupNames label

G:=SmallGroup(320,1577);
// by ID

G=gap.SmallGroup(320,1577);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,3446,584,10085,5052,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^8=c^2=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,d*b*d=b^5,b*e=e*b,d*c*d=e*c*e=b^4*c,d*e=e*d>;
// generators/relations

׿
×
𝔽