direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C5×D8⋊C22, C20.84C24, C40.51C23, C4○D8⋊3C10, D8⋊4(C2×C10), C8⋊C22⋊6C10, Q16⋊4(C2×C10), C4.68(D4×C10), (C2×C40)⋊30C22, SD16⋊3(C2×C10), (C2×C20).527D4, C20.473(C2×D4), (C5×D8)⋊20C22, C8.C22⋊6C10, C4.7(C23×C10), C8.2(C22×C10), C23.20(C5×D4), (D4×C10)⋊67C22, (C2×M4(2))⋊5C10, M4(2)⋊5(C2×C10), (C5×Q16)⋊18C22, (Q8×C10)⋊56C22, D4.4(C22×C10), (C5×D4).37C23, C22.25(D4×C10), (C22×C10).38D4, (C5×Q8).38C23, Q8.4(C22×C10), (C10×M4(2))⋊15C2, (C2×C20).686C23, (C5×SD16)⋊19C22, C10.205(C22×D4), (C5×M4(2))⋊31C22, (C22×C20).467C22, (C2×C8)⋊3(C2×C10), C2.29(D4×C2×C10), C4○D4⋊5(C2×C10), (C5×C4○D8)⋊10C2, (C2×C4○D4)⋊12C10, (C10×C4○D4)⋊28C2, (C2×D4)⋊16(C2×C10), (C5×C8⋊C22)⋊13C2, (C2×Q8)⋊16(C2×C10), (C2×C4).138(C5×D4), (C2×C10).421(C2×D4), (C5×C4○D4)⋊25C22, (C5×C8.C22)⋊13C2, (C2×C4).47(C22×C10), (C22×C4).78(C2×C10), SmallGroup(320,1577)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×D8⋊C22
G = < a,b,c,d,e | a5=b8=c2=d2=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, dbd=b5, be=eb, dcd=ece=b4c, de=ed >
Subgroups: 402 in 262 conjugacy classes, 158 normal (22 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C10, C10, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C20, C20, C20, C2×C10, C2×C10, C2×C10, C2×M4(2), C4○D8, C8⋊C22, C8.C22, C2×C4○D4, C40, C2×C20, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C22×C10, C22×C10, D8⋊C22, C2×C40, C5×M4(2), C5×D8, C5×SD16, C5×Q16, C22×C20, C22×C20, D4×C10, D4×C10, Q8×C10, C5×C4○D4, C5×C4○D4, C10×M4(2), C5×C4○D8, C5×C8⋊C22, C5×C8.C22, C10×C4○D4, C5×D8⋊C22
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C24, C2×C10, C22×D4, C5×D4, C22×C10, D8⋊C22, D4×C10, C23×C10, D4×C2×C10, C5×D8⋊C22
(1 20 67 53 26)(2 21 68 54 27)(3 22 69 55 28)(4 23 70 56 29)(5 24 71 49 30)(6 17 72 50 31)(7 18 65 51 32)(8 19 66 52 25)(9 78 64 37 41)(10 79 57 38 42)(11 80 58 39 43)(12 73 59 40 44)(13 74 60 33 45)(14 75 61 34 46)(15 76 62 35 47)(16 77 63 36 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 8)(2 7)(3 6)(4 5)(9 10)(11 16)(12 15)(13 14)(17 22)(18 21)(19 20)(23 24)(25 26)(27 32)(28 31)(29 30)(33 34)(35 40)(36 39)(37 38)(41 42)(43 48)(44 47)(45 46)(49 56)(50 55)(51 54)(52 53)(57 64)(58 63)(59 62)(60 61)(65 68)(66 67)(69 72)(70 71)(73 76)(74 75)(77 80)(78 79)
(2 6)(4 8)(9 13)(11 15)(17 21)(19 23)(25 29)(27 31)(33 37)(35 39)(41 45)(43 47)(50 54)(52 56)(58 62)(60 64)(66 70)(68 72)(74 78)(76 80)
(1 40)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 72)(10 65)(11 66)(12 67)(13 68)(14 69)(15 70)(16 71)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 58)(26 59)(27 60)(28 61)(29 62)(30 63)(31 64)(32 57)(49 77)(50 78)(51 79)(52 80)(53 73)(54 74)(55 75)(56 76)
G:=sub<Sym(80)| (1,20,67,53,26)(2,21,68,54,27)(3,22,69,55,28)(4,23,70,56,29)(5,24,71,49,30)(6,17,72,50,31)(7,18,65,51,32)(8,19,66,52,25)(9,78,64,37,41)(10,79,57,38,42)(11,80,58,39,43)(12,73,59,40,44)(13,74,60,33,45)(14,75,61,34,46)(15,76,62,35,47)(16,77,63,36,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,22)(18,21)(19,20)(23,24)(25,26)(27,32)(28,31)(29,30)(33,34)(35,40)(36,39)(37,38)(41,42)(43,48)(44,47)(45,46)(49,56)(50,55)(51,54)(52,53)(57,64)(58,63)(59,62)(60,61)(65,68)(66,67)(69,72)(70,71)(73,76)(74,75)(77,80)(78,79), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)(66,70)(68,72)(74,78)(76,80), (1,40)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,72)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(49,77)(50,78)(51,79)(52,80)(53,73)(54,74)(55,75)(56,76)>;
G:=Group( (1,20,67,53,26)(2,21,68,54,27)(3,22,69,55,28)(4,23,70,56,29)(5,24,71,49,30)(6,17,72,50,31)(7,18,65,51,32)(8,19,66,52,25)(9,78,64,37,41)(10,79,57,38,42)(11,80,58,39,43)(12,73,59,40,44)(13,74,60,33,45)(14,75,61,34,46)(15,76,62,35,47)(16,77,63,36,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,22)(18,21)(19,20)(23,24)(25,26)(27,32)(28,31)(29,30)(33,34)(35,40)(36,39)(37,38)(41,42)(43,48)(44,47)(45,46)(49,56)(50,55)(51,54)(52,53)(57,64)(58,63)(59,62)(60,61)(65,68)(66,67)(69,72)(70,71)(73,76)(74,75)(77,80)(78,79), (2,6)(4,8)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)(66,70)(68,72)(74,78)(76,80), (1,40)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,72)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,58)(26,59)(27,60)(28,61)(29,62)(30,63)(31,64)(32,57)(49,77)(50,78)(51,79)(52,80)(53,73)(54,74)(55,75)(56,76) );
G=PermutationGroup([[(1,20,67,53,26),(2,21,68,54,27),(3,22,69,55,28),(4,23,70,56,29),(5,24,71,49,30),(6,17,72,50,31),(7,18,65,51,32),(8,19,66,52,25),(9,78,64,37,41),(10,79,57,38,42),(11,80,58,39,43),(12,73,59,40,44),(13,74,60,33,45),(14,75,61,34,46),(15,76,62,35,47),(16,77,63,36,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,8),(2,7),(3,6),(4,5),(9,10),(11,16),(12,15),(13,14),(17,22),(18,21),(19,20),(23,24),(25,26),(27,32),(28,31),(29,30),(33,34),(35,40),(36,39),(37,38),(41,42),(43,48),(44,47),(45,46),(49,56),(50,55),(51,54),(52,53),(57,64),(58,63),(59,62),(60,61),(65,68),(66,67),(69,72),(70,71),(73,76),(74,75),(77,80),(78,79)], [(2,6),(4,8),(9,13),(11,15),(17,21),(19,23),(25,29),(27,31),(33,37),(35,39),(41,45),(43,47),(50,54),(52,56),(58,62),(60,64),(66,70),(68,72),(74,78),(76,80)], [(1,40),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,72),(10,65),(11,66),(12,67),(13,68),(14,69),(15,70),(16,71),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,58),(26,59),(27,60),(28,61),(29,62),(30,63),(31,64),(32,57),(49,77),(50,78),(51,79),(52,80),(53,73),(54,74),(55,75),(56,76)]])
110 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 10D | 10E | ··· | 10P | 10Q | ··· | 10AF | 20A | ··· | 20H | 20I | ··· | 20T | 20U | ··· | 20AJ | 40A | ··· | 40P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 | 20 | ··· | 20 | 40 | ··· | 40 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
110 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | ||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | C10 | D4 | D4 | C5×D4 | C5×D4 | D8⋊C22 | C5×D8⋊C22 |
kernel | C5×D8⋊C22 | C10×M4(2) | C5×C4○D8 | C5×C8⋊C22 | C5×C8.C22 | C10×C4○D4 | D8⋊C22 | C2×M4(2) | C4○D8 | C8⋊C22 | C8.C22 | C2×C4○D4 | C2×C20 | C22×C10 | C2×C4 | C23 | C5 | C1 |
# reps | 1 | 1 | 4 | 4 | 4 | 2 | 4 | 4 | 16 | 16 | 16 | 8 | 3 | 1 | 12 | 4 | 2 | 8 |
Matrix representation of C5×D8⋊C22 ►in GL6(𝔽41)
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 1 | 0 | 0 | 0 | 0 |
39 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 22 | 0 | 1 | 16 |
0 | 0 | 22 | 0 | 0 | 17 |
0 | 0 | 40 | 1 | 0 | 0 |
0 | 0 | 39 | 0 | 0 | 19 |
40 | 0 | 0 | 0 | 0 | 0 |
39 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 22 | 1 | 16 |
0 | 0 | 0 | 22 | 0 | 16 |
0 | 0 | 1 | 40 | 0 | 0 |
0 | 0 | 0 | 39 | 0 | 19 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 22 |
0 | 0 | 0 | 1 | 0 | 22 |
0 | 0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 32 | 7 | 0 |
0 | 0 | 9 | 0 | 7 | 34 |
0 | 0 | 0 | 0 | 9 | 32 |
0 | 0 | 0 | 0 | 18 | 32 |
G:=sub<GL(6,GF(41))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,39,0,0,0,0,1,1,0,0,0,0,0,0,22,22,40,39,0,0,0,0,1,0,0,0,1,0,0,0,0,0,16,17,0,19],[40,39,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,22,22,40,39,0,0,1,0,0,0,0,0,16,16,0,19],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,22,22,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,9,0,0,0,0,32,0,0,0,0,0,7,7,9,18,0,0,0,34,32,32] >;
C5×D8⋊C22 in GAP, Magma, Sage, TeX
C_5\times D_8\rtimes C_2^2
% in TeX
G:=Group("C5xD8:C2^2");
// GroupNames label
G:=SmallGroup(320,1577);
// by ID
G=gap.SmallGroup(320,1577);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,3446,584,10085,5052,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^8=c^2=d^2=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,d*b*d=b^5,b*e=e*b,d*c*d=e*c*e=b^4*c,d*e=e*d>;
// generators/relations